Incomplete block factorization preconditioning for linear systems arising in the numerical solution of the Helmholtz equation

نویسنده

  • Chun-Hua Guo
چکیده

The application of the finite difference method to discretize the complex Helmholtz equation on a bounded region in the plane produces a linear system whose coefficient matrix is block tridiagonal and is some (complex) perturbation of an M-matrix. The matrix is also complex symmetric, and its real part is frequently indefinite. Conjugate gradient type methods are available for this kind of linear systems, but the problem of choosing a good preconditioner remains. We first establish two existence results for incomplete block factorizations of matrices (of special type). In the case of the complex Helmholtz equation, specific incomplete block factorization exists for the resulting complex matrix and its real part if the mesh size is reasonably small. Numerical experiments show that using these two incomplete block factorizations as preconditioners can give considerably better convergence results than simply using a preconditioner that is good for the Laplacian also as a preconditioner for the complex system. The latter idea has been used by many authors for the real case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing a block incomplete LU preconditioner as the by-product of block left-looking A-biconjugation process

In this paper, we present a block version of incomplete LU preconditioner which is computed as the by-product of block A-biconjugation process. The pivot entries of this block preconditioner are one by one or two by two blocks. The L and U factors of this block preconditioner are computed separately. The block pivot selection of this preconditioner is inherited from one of the block versions of...

متن کامل

A Multi-Level Preconditioner with Applications to the Numerical Simulation of Coating Problems

A multi-level preconditioned iterative method based on a multi-level block ILU factoriza-tion preconditioning technique is introduced and is applied to the solution of unstructured sparse linear systems arising from the numerical simulation of coating problems. The coef-cient matrices usually have several rows with zero diagonal values that may cause stability diiculty in standard ILU factoriza...

متن کامل

A scalable Helmholtz solver in GRAPES over large-scale multicore cluster

This paper discusses performance optimization on the dynamical core of global numerical weather prediction model in Global/Regional Assimilation and Prediction System (GRAPES). GRAPES is a new generation of numerical weather prediction system developed and currently used by Chinese Meteorology Administration. The computational performance of the dynamical core in GRAPES relies on the efficient ...

متن کامل

Parallel Multilevel Block ILU Preconditioning Techniques for Large Sparse Linear Systems

We present a class of parallel preconditioning strategies built on a multilevel block incomplete LU (ILU) factorization technique to solve large sparse linear systems on distributed memory parallel computers. The preconditioners are constructed by using the concept of block independent sets. Two algorithms for constructing block independent sets of a distributed sparse matrix are proposed. We c...

متن کامل

Scallability Analysis of Parallel Mic(0) Preconditioning Algorithm for 3d Elliptic Problems

Novel parallel algorithms for the solution of large FEM linear systems arising from second order elliptic partial differential equations in 3D are presented. The problem is discretized by rotated trilinear nonconforming Rannacher–Turek finite elements. The resulting symmetric positive definite system of equations Ax = f is solved by the preconditioned conjugate gradient algorithm. The precondit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996